SYNTHESIS OF 3-DEOXY-3,4-DIDEHYDRO DERIVATIVES OF 5-O-MYCAMINOSYLTYLONOLIDE, 5-O-(4-DEOXYMYCAMINOSYL) TYLONOLIDE, AND DESMYCOSIN

Shunji Kageyama, Tsutomu Tsuchiya* and Sumio Umezawa
Institute of Bioorganic Chemistry, 1614 Ida, Nakahara-ku, Kawasaki 211, Japan
(Received for publication December 14, 1992)

The 3-deoxy-3,4-didehydro derivatives of 5-O-mycaminosyltylonolide, 5-O-(4-deoxymycaminosyl)tylonolide, and desmycosin have been prepared by treatment of the corresponding 3 - O-sulfonyl derivatives with NaI in 2-butanone as the key step. The mechanistic difference in the formation of the 2,3- and 3,4-unsaturated derivatives from the same 3-O-sulfonyl derivative is discussed.

Recently we reported ${ }^{1,2)}$ the synthesis and antibacterial activities of 3-deoxy-5-O-mycaminosyltylonolide and 3-deoxy-5-O-(4-deoxymycaminosyl)tylonolide ($3,4^{\prime}$-DT) and it was found that removal of the 3-hydroxyl group in the macrolactone ring of mycaminosyltylonolides enhances the activity in comparison to the parent antibiotics. In the course of the synthesis of the 3-deoxy derivatives we obtained the 2,3-unsaturated intermediates and these were selectively hydrogenated to give the desired products. Deprotection of the above intermediates should give the corresponding 2,3-unsaturated analogs of the 3-deoxy compounds. Accordingly, 3-deoxy-5-O-(4-deoxymycaminosyl)-2,3-didehydro-23-O-(dimethylthexylsilyl)tylonolide 9,20 -bis(ethylene acetal) ${ }^{2 \text {) }}$ was deprotected to give the 2,3 -unsaturated analog (De-2,3-DT) of $3,4^{\prime}$-DT, and was found to be identical with that prepared by a different route by TANAKA ${ }^{3}$. This analog had less than one-half the activity of $3,4^{\prime}$-DT, suggesting that the 2,3 -unsaturation does not enhance antibacterial activity as does 3-deoxygenation. In connection with this study we were interested to prepare the corresponding 3,4-unsaturated compounds. Such compounds are possible to give antibacterial spectra different from those for the 2,3-unsaturated compounds. This paper describes the synthesis of 3,4-unsaturated analogs of mycaminosyltylonolides and desmycosin.

5-O-Mycaminosyltylonolide dimethyl acetal ${ }^{4)}$ (3) was treated with tert-butyldimethylsilyl chloride in DMF to give the $23-O$-silyl product (4). Selective acetylation of 4 with acetic anhydride in toluene - acetonitrile gave the $2^{\prime}, 4^{\prime}$-di- O-acetyl derivative (5). Sulfonylation of 5 with phenylmethanesulfonyl chloride gave the $3-O$-sulfonyl derivative (6).

In a foregoing paper ${ }^{2)}$ we reported that treatment of 5-O-(4-deoxy-4-iodomycaminosyl)-23-O-(dimethylthexylsily)-3-O-phenylmethanesulfonyltylonolide 9,20-bis(ethylene acetal), a structurally analogous compound to 6 , with ammonia in aqueous methanol gave the corresponding 2,3-unsaturated compound, and the iodo precursor was prepared from the corresponding 3, 4^{\prime}-bis(O-phenylmethanesulfonyl) compound by treatment with NaI in 2-butanone (30 minutes at $80^{\circ} \mathrm{C}$). In the present study we utilized the same reaction conditions (NaI in 2-butanone), instead of ammonia in aqueous methanol, only extending the reaction period (8 hours at $80^{\circ} \mathrm{C}$), whereupon the corresponding 3,4 -unsaturated product (9) was produced in 84% yield, together with the C-20-deblocked 3-O-phenylmethanesulfonyl derivative (8). The 3-deoxy-3-iodo and 2,3-unsaturated products were not detected. This synthetic method effectively makes 3,4-unsaturated products. The 3,4-unsaturated structure 9 was confirmed by ${ }^{1} \mathrm{H}$ NMR spectrum, and also

Table 1. ${ }^{1} \mathrm{H} \mathrm{NMR}^{\mathbf{a}}$ chemical shifts ${ }^{\mathbf{b}}$ of 1, 2, 5-O-(4-deoxymycaminosyl)tylonolide (DT), 3-deoxy-2,3-didehydro-5-O-mycaminosyltylonolide ${ }^{33}$ (De-2,3-MT), and 3-deoxy-5-O-(4-deoxymycaminosyl)-2,3-didehydrotylonolide ${ }^{3}$) (De-2,3-DT) in CDCl_{3} at $27^{\circ} \mathrm{C}$.

	1	2	De-2,3-MT	De-2,3-DT	DT
2-H	2.98, 3.02	2.99, 2.99	5.65	5.66	1.96, 2.52
3-H	5.59	5.55	6.81	6.83	3.86
4-H	-	-	2.68	2.73	1.72
5-H	4.34	4.35	3.65	3.62	3.69
6-H	2.11	1.96	1.74	1.60	2.06
7-H	1.40, 1.66	1.50, 1.67	$1.29,1.29$	1.71, 1.71	1.62, 1.83
8-H	2.77	2.65	2.50	2.48	2.56
10-H	6.17	6.21	6.22	6.24	6.32
11-H	7.16	7.15	7.20	7.20	7.34
13-H	5.77	5.78	5.78	5.77	5.87
14-H	2.91	2.90	2.90	2.90	2.89
15-H	4.95	4.95	4.88	4.87	4.95
16-H	1.63, 1.84	1.63, 1.87	1.65, 1.86	1.65, 1.84	1.65, 1.84
$17 . \mathrm{CH}_{3}$	0.96	0.96	0.97	0.97	0.95
$18-\mathrm{CH}_{3}$	1.69	1.75	1.12	1.21	1.09
19-H	2.35, 2.63	2.37, 2.72	2.53, 2.86	2.53, 2.92	2.46, 3.02
$20-\mathrm{H}$	9.74	9.76	9.69	9.70	9.72
$21-\mathrm{CH}_{3}$	1.17	1.18	1.16	1.21	1.21
$22-\mathrm{CH}_{3}$	1.84	1.84	1.83	1.83	1.82
$23-\mathrm{H}$	3.69, 3.74	3.68, 3.73	3.74, 3.77	3.74, 3.74	3.73, 3.74
I'-H	4.05	4.02	4.24	4.20	4.21
$2^{\prime}-\mathrm{H}$	3.56	3.29	3.50	3.24	3.20
$3^{\prime}-\mathrm{H}$	2.44	2.47	2.45	2.48	2.46
$4^{\prime}-\mathrm{H}$	3.08	1.26, 1.67	3.10	1.21, 1.65	1.20, 1.66
$5^{\prime}-\mathrm{H}$	3.25	3.46	3.25	3.45	3.47
$6^{\prime}-\mathrm{CH}_{3}$	1.28	1.21	1.22	1.21	1.20
$3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$	2.57	2.40	2.56	2.34	2.27

a Measured at 500 MHz with a JEOL Alpha 500 .
${ }^{b}$ In ppm downfield from TMS. The shifts were confirmed by the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ correlated 2D spectra with aid of, in some cases, HOHAHA method.
by the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the final product (1) (see Tables 1 and 2).

To examine the effect of the 3-O-sulfonyl group the $3-O$-mesyl (instead of $3-O$-phenylmethanesulfonyl) derivative (7) was prepared, and this was treated with NaI . Again the same 3,4-unsaturated product 9 was obtained in 67% yield, although the reaction time required was longer, suggesting that any sulfonyl group will give the 3,4 -unsaturation
 compound under similar conditions. Deacetylation of 9 gave 10, and desilylation of 10 gave the 3-deoxy-3,4-didehydro compound (1).

4'-Deoxy analog (2) of 1 was also prepared using a similar route. 5-O-(4-Deoxymycaminosyl)tylonolide dimethyl acetal ${ }^{5)}$ (11) was converted into the $23-O$-silyl derivative (12), and after acetylation, the $2^{\prime}-O$-acetyl derivative (13) was converted to the 3-O-phenylmethanesulfonyl derivative (14). Similar treatment of 14 with NaI , as described for 6 gave the 3,4 -unsaturated product (15) in 73% yield. Deacetylation (to give

	R_{1}	R_{2}	R_{3}	R_{4}
$\mathbf{3}$	H	$\mathrm{CH}(\mathrm{OMe})_{2}$	H	H
$\mathbf{4}$	H	$\mathrm{CH}(\mathrm{OMe})_{2}$	Si	H
$\mathbf{5}$	H	$\mathrm{CH}(\mathrm{OMe})_{2}$	Si	Ac
$\mathbf{6}$	Bes	$\mathrm{CH}(\mathrm{OMe})_{2}$	Si	Ac
		Ac		
$\mathbf{7}$	$\mathrm{SO}_{2} \mathrm{CH}_{3}$	$\mathrm{CH}(\mathrm{OMe})_{2}$	Si	Ac
		CHO	Si	Ac
$\mathbf{8}$	Bes	CHO	Si	Ac

$\begin{array}{rl}9 & R=A c \\ 10 & R=H\end{array}$

Bes: $\quad \mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$
16) followed by acid-catalyzed desilylation and deacetalation gave 2.

Preparation of 2 from $5-O$-mycaminosyltylonolide ${ }^{6)}$ was attempted by conducting simultaneous 3,4 -unsaturation and 4^{\prime}-iodination by treatment of a $3,4^{\prime}$-disulfonyl derivative with NaI. 5-OMycaminosyltylonolide 9,20 -bis(ethylene acetal) ${ }^{2}$ (17) was treated with tert-butyldimethylsilyl chloride to give the 23-O-silyl derivative (18), which was selectively sulfonylated with phenylmethanesulfonyl chloride to give the $3,4^{\prime}$-bis(O-phenylmethanesulfonyl) derivative (19). Iodination of 19 for a short period with NaI gave the 4^{\prime}-deoxy- $\mathbf{4}^{\prime}$-iodo-3-O-phenylmethanesulfonyl derivative ($\mathbf{2 0}, \mathbf{7 3} \%$). Longer reaction of $\mathbf{1 9}$ or $\mathbf{2 0}$ gave the 4^{\prime}-deoxy- 4^{\prime}-iodo- 3,4 -unsaturation product (21) in 31 and 40% yields, respectively. The configuration at C-4' of $\mathbf{2 0}$ and 21 is assumed to be R (I down) on the basis of the discussion reported ${ }^{2)}$ for the same iodination. The decreased yields of 21 compared with 9 and 15 are not clear, but possibly the unstable 4^{\prime}-deoxy-4'-iodo intermediate(s) initially formed decomposes.

Table 2. ${ }^{13} \mathrm{C}$ NMR ${ }^{\text {a }}$ chemical shifts ${ }^{\text {b }}$ of 1, 2, DT, De-2,3-MT, and De-2,3-DT in CDCl_{3} at $27^{\circ} \mathrm{C}$.

Carbon	1	2	De-2,3-MT	De-2,3-DT	DT
1	171.4	171.5	166.0	166.1	173.9
2	33.3	33.2	122.4	120.6	39.6
3	123.0	121.4	150.9	151.4	67.2
4	136.0	137.5	40.4	40.5	40.9
5	81.6	81.7	81.9	82.2	81.0
6	38.8	39.2	33.3	30.6	31.4
7	34.3	33.4	30.6	33.3	32.4
8	42.6	43.8	44.5	44.7	44.9
9	204.5	204.1	203.2	203.5	203.5
10	122.3	120.9	118.5	118.4	118.6
11	147.4	146.9	147.8	147.7	147.9
12	136.5	136.3	137.5	137.5	136.1
13	139.0	139.0	140.1	140.0	141.7
14	46.7	46.7	47.4	47.4	47.2
15	74.9	74.6	74.7	74.7	74.8
16	25.8	25.7	26.2	26.1	25.5
17	9.5	9.5	9.9	9.8	9.7
18	14.5	14.1	19.6	19.3	8.7
19	45.2	44.5	42.9	42.9	43.8
20	202.2	202.4	201.9	202.2	203.5
21	16.5	16.9	17.5	17.4	17.5
22	13.3	13.3	13.7	13.7	13.0
23	62.9	62.8	62.9	62.9	62.4
1^{\prime}	100.5	101.5	103.9	104.5	104.2
2^{\prime}	70.3	69.8	70.8	70.2	70.3
3	70.6	65.7	70.4	65.6	65.6
4^{\prime}	70.5	28.7	70.6	28.3	28.4
5	73.3	69.5	73.3	69.6	69.5
6^{\prime}	17.9	21.2	17.7	21.0	21.0
$\mathrm{N}-\left(\mathrm{CH}_{3}\right)_{2}$	41.8	40.3	41.8	40.2	40.2

a Measured at 125 MHz with a JEOL Alpha 500 .
b In ppm downfield from TMS. The shifts were confirmed by the ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ correlated 2 D spectra with aid of, in some cases, HMBC method.

To examine the difference in effectiveness of the halo anions ($\mathrm{I}^{-}, \mathrm{Br}^{-}$, and Cl^{-}) in this reaction, 19 was treated with LiBr or $\mathrm{Et}_{4} \mathrm{NCl}$ in 2-butanone, whereupon similar 3,4-unsaturated 4^{\prime}-bromo- 4^{\prime}-deoxy (22) and 4^{\prime}-chloro- 4^{\prime}-deoxy derivatives (23) were prepared in 41 and 37% yields, respectively. The configurations at $\mathrm{C}-\mathbf{4}^{\prime}$ of $\mathbf{2 2}$ and $\mathbf{2 3}$ were determined to be R (halo atom down) on the basis of large coupling constants (10 Hz) of $J_{3^{\prime}, 4^{\prime}}$ (for 22) and $J_{3^{\prime}, 4^{\prime}}$ and $J_{4^{\prime}, 5^{\prime}}$ (for 23), which were confirmed by the ${ }^{1} \mathrm{H}_{-}{ }^{1} \mathrm{H} 2 \mathrm{D}$ spectra. The above results indicate that all halo anions (excluding F^{-}) catalyze the 3,4-unsaturation. Reaction mechanism of these reactions is not clear, but it is possible that a halo anion, which is a more neutral species than ammonia, attacks the 4-H to abstract it as a proton to form C-4 carbanion, which then induces elimination of the 3 -sulfonyloxy group to give 3,4 -unsaturation. As the 3-O-phenylmethanesulfonyl group and $\mathrm{C}(4)-H$ are expected to be (nearly) antiperiplanar relationship (a situation at which elimination readily occurs), formation of the 3,4 -double bond will be facilitated by the catalysis of almost neutral halo anion. The spacial relationship between the groups concerned in 6 was ascertained by the HOHAHA measurement (see Fig. 1); lack of observation of a cross peak between 3-H and $4-\mathrm{H}$ (this indicates no coupling) suggests that the projection angle between the two hydrogens should be $\sim 90^{\circ}$. As $\mathrm{C}-2$ and $4-\mathrm{H}$ is considered to be difficult to take antiperiplanar relationship by the nature of

	R_{1}		R_{2}
R_{3}			
$\mathbf{1 7}$	H	H	OH
$\mathbf{1 8}$	H	Si	
		O	OH

19 Bes $\quad \underset{1}{\dagger}+\quad$ OBes
$20 \quad$ Bes $\quad \underset{i}{\mathrm{Si}}$

$\begin{array}{ll}21 & \mathrm{R}=\mathrm{I} \\ 22 & \mathrm{R}=\mathrm{Br} \\ \mathbf{2 3} & \mathrm{R}=\mathrm{Cl} \\ \mathbf{2 4} & \mathrm{R}=\mathrm{H}\end{array}$

	R_{1}	R_{2}	R_{3}
$\mathbf{2 8}$	$\mathrm{CH}\left(\mathrm{OCH}_{2}\right)_{2}$	Ac	Ac
$\mathbf{2 9}$	$\mathrm{CH}\left(\mathrm{OCH}_{2}\right)_{2}$	Ac	H
$\mathbf{3 0}$	CHO	Ac	H
$\mathbf{3 1}$	CHO	H	H

Bes: $\quad \mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$
the macrolactone ring, the remaining 3-O-phenylmethanesulfonyl and $4-\mathrm{H}$ should take antiperiplanar relationship. On the contrary, the more basic ammonia in aqueous methanol withdraws one of the protons at $\mathrm{C}-2$, rather than the proton at $\mathrm{C}-4$, to give 2,3 -unsaturation ${ }^{1,2}$, because $2-\mathrm{H}$ hydrogens are activated by the neighboring, electron-withdrawing carboxyl group.

Reductive deiodination of 21 with $\mathrm{Bu}_{3} \mathrm{SnH}$-azobis(isobutyronitrile) (AIBN) gave the 4^{\prime}-deoxy derivative (24) in high yield. Acid-catalyzed deprotection of 24 as described for 16 gave 2.

3-Deoxy-3,4-didehydrodesmycosin (31) was also prepared by taking a similar route. Desmycosin

Fig. 1. HOHAHA spectrum of compound 6.

In CDCl_{3} at $27^{\circ} \mathrm{C}$ measured at 500 MHz with a JEOL Alpha 500 ; mixing time: 120 msec . The shift values of $3-\mathrm{H}$ and $4-\mathrm{H}$ were $\delta 4.92$ and $\delta 1.61$, respectively. The crossing of the $3-\mathrm{H}$ and $4-\mathrm{H}$ is shown by x.

20-(ethylene acetal) (25), prepared from tylosin by acid-catalyzed hydrolysis in the presence of ethylene glycol, was acetylated to give the $2^{\prime}, 4^{\prime}, 4^{\prime \prime}$-tri- O-acetyl derivative (26). After phenylmethanesulfonylation, the 3 -sulfonate (27) was treated with NaI , and the 3,4 -unsaturated derivative (28) was obtained in 67% yield. Successive deacetylation of 28 (to give 29), deacetalation (to give $\mathbf{3 0}$) and deacetylation gave 3-deoxy-3,4-didehydrodesmycosin (31).

Antibacterial spectra of 1, 2, and 31 are shown in Table 3. Compounds 1 and 2 showed similar antibacterial activity with that for the corresponding 3-deoxy-2,3-didehydro analogs (De-2,3-MT and De-2,3-DT), however, 2 showed activity against some resistant bacteria.

Experimental

General

Optical rotations were determined with a Perkin-Elmer 241 polarimeter. ${ }^{1} \mathrm{H}$ NMR spectra were recorded with Bruker WM $250(250 \mathrm{MHz})$ and JEOL Alpha $500(500 \mathrm{MHz})$ spectrometers, and the chemical

Table 3. Antibacterial activity (MIC $\mu \mathrm{g} / \mathrm{ml}$) of $\mathbf{1}, \mathbf{2}$ and 31 together with 5-O-(4-deoxymycaminosyl)tylonolide (DT), 3-deoxy-2,3-didehydro-5-O-mycaminosyltylonolide ${ }^{3}$ (De-2,3-MT), 3-deoxy-5-O-(4-deoxymycaminosyl)-2,3-didehydrotylonolide ${ }^{3)}$ (De-2,3-DT), and erythromycin (EM).

Test organism ${ }^{\text {a }}$	1	2	31	De-2,3-MT	De-2,3-DT	DT	EM
Staphylococcus aureus FDA 209P JC-1	3.13	1.56	0.39	3.13	3.13	0.2	0.2
S. aureus MS $8710^{\text {b }}$	>50	12.5	>50	>50	>50	>50	>50
S. aureus MS $9610^{\text {b }}$	>50	6.25	>50	>50	>50	>50	>50
S. epidermidis IID 866	1.56	1.56	0.2	1.56	1.56	0.1	0.1
Streptococcus pyogenes Cook	0.78	1.56	0.2	1.56	3.13	0.2	0.05
S. pyogenes CAY 2303°	> 50	25	>50	>50	>50	>50	>50
S. pneumoniae IID 552	0.78	0.78	3.13	1.56	1.56	0.1	0.05
Enterococcus faecalis IID 682	6.25	6.25	6.25	6.25	6.25	0.39	0.1
Branhamella catarrhalis CAY1267	1.56	0.39	1.56	1.56	0.78	0.2	0.2
Escherichia coli O-1	> 50	50	>50	>50	>50	6.25	>50
Citrobacter freundii NIH10018-68	25	12.5	>50	50	6.52	1.56	12.5
Shigella sonnei II 37148	>50	50	>50	>50	>50	12.5	25
Klebsiella pneumoniae ATCC 10031	6.25	3.13	25	25	6.25	0.78	3.13
Proteus vulgaris OX-19	>50	12.5	>50	>50	>50	25	>50
Pseudomonas aeruginosa NCTC10490	>50	50	>50	>50	>50	25	>50

[^0]shifts (δ) were measured downfield from internal TMS. Mass spectra (MS) were determined using the fast atom bombardment method with a JMS-DX300 (HF) mass spectrometer. Thin-layer chromatography (TLC) was performed on Kieselgel $60 \mathrm{~F}_{254}$ (Merck), and column chromatography on Kieselgel 60, $230 \sim$ 400 mesh (Merck).

23-O-tert-Butyldimethylsilyl-5-O-mycaminosyltylonolide Dimethyl Acetal (4)

A mixture of $3(9.50 \mathrm{~g}, 14.8 \mathrm{mmol})$, imidazole $(1.81 \mathrm{~g})$, and tert-butyldimethylsilyl chloride $(2.67 \mathrm{~g}$, 17.7 mmol) in dry DMF (95 ml) was kept for 8 hours at room temperature. After addition of toluene $(500 \mathrm{ml})$, the whole mixture was washed with aq NaHCO_{3} and aq NaCl (both saturated) and the solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by chromatography with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq $\mathrm{NH}_{3}(15: 1: 0.1)$ to give a solid of $4,9.64 \mathrm{~g}(86 \%), \mathrm{mp} 183.5 \sim 184.5^{\circ} \mathrm{C}$ (ether), $[\alpha]_{\mathrm{D}}^{20}+3^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 758(\mathrm{M}+1)^{+},{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.89(9 \mathrm{H}, \mathrm{s}$, tert-butyl), $1.01(3 \mathrm{H}$, $\left.\mathrm{d}, 18-\mathrm{CH}_{3}\right), 1.79\left(3 \mathrm{H}, \mathrm{s}, 22-\mathrm{CH}_{3}\right), 2.50\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.25$ and $3.30\left(\right.$ each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3} \times 2\right)$.

Anal Calcd for $\mathrm{C}_{39} \mathrm{H}_{71} \mathrm{NO}_{11} \mathrm{Si} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}: \quad \mathrm{C} 61.06, \mathrm{H} 9.46, \mathrm{~N} 1.83$.
Found: \quad C 61.39, H 9.52, N 1.80 .
5-O-(2,4-Di-O-acetylmycaminosyl)-23-O-tert-butyldimethylsilyltylonolide Dimethyl Acetal (5)
A mixture of $4(1.00 \mathrm{~g}, 1.32 \mathrm{mmol})$ and acetic anhydride $(0.3 \mathrm{ml}, 3.2 \mathrm{mmol})$ in toluene-acetonitrile ($1: 1,40 \mathrm{ml}$) was kept overnight at room temperature. After concentration of the solution, the residue dissolved in toluene was washed with aq NaHCO_{3} (saturated), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was purified by a short column with hexane - acetone $(7: 3)$ to give a solid of $5,1.06 \mathrm{~g}(95 \%),[\alpha]_{\mathrm{D}}^{20}$ $+4^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathrm{MS} \mathrm{m} / z 842(\mathrm{M}+1)^{+},{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.89(9 \mathrm{H}, \mathrm{s}$, tert-butyl), $0.93(3 \mathrm{H}, \mathrm{d}$, $\left.18-\mathrm{CH}_{3}\right), 1.79\left(3 \mathrm{H}, \mathrm{s}, 22-\mathrm{CH}_{3}\right), 2.05$ and $2.06($ each $3 \mathrm{H}, \mathrm{s}, \mathrm{Ac} \times 2), 2.34\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.23$ and 3.29 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3} \times 2$).

[^1]Found: C 61.27, H 9.14, N 1.64.

5-O-(2,4-Di-O-acetylmycaminosyl)-3-O-phenylmethanesulfonyl-23-O-tert-butyldimethylsilyltylonolide Dimethyl Acetal (6)

To a cold $\left(-30^{\circ} \mathrm{C}\right)$ solution of $5(906 \mathrm{mg}, 1.08 \mathrm{mmol})$ in dry pyridine $(18 \mathrm{ml})$ was added phenylmethanesulfonyl chloride ($370 \mathrm{mg}, 1.95 \mathrm{mmol}$) and the solution was kept at $-20^{\circ} \mathrm{C}$ for 3 hours. Water ($\sim 0.4 \mathrm{ml}$) was added, and the solution was gradually warmed to room temperature. After concentration to a half of its volume, the mixture was extracted with toluene. The organic solution was washed with aq NaHCO_{3} (saturated), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give a solid of $6,1.1 \mathrm{~g}$ (quant.), which was slightly unstable, and used for the next step without purification, TLC: Rf 0.3 (hexane-acetone, 7:3) (cf. 5: Rf 0.4); analytical sample was purified by column chromatography (hexane-acetone, $7: 3$), $[\alpha]_{\mathrm{D}}^{20}+12^{\circ}$ (c $1, \mathrm{CHCl}_{3}$); MS $m / z 996(\mathrm{M}+1)^{+},{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.89\left(9 \mathrm{H}, \mathrm{s}\right.$, tert-butyl), $1.78\left(3 \mathrm{H}, \mathrm{s}, 22-\mathrm{CH}_{3}\right)$, 2.02 and 2.03 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Ac} \times 2$), $2.32\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.27$ and 3.33 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3} \times 2$), 5.88 $\left(1 \mathrm{H}, \mathrm{d}, J_{13,14}=10.5 \mathrm{~Hz}, 13-\mathrm{H}\right), 6.26\left(1 \mathrm{H}, \mathrm{d}, J_{10,11}=15.3 \mathrm{~Hz}, 10-\mathrm{H}\right), 7.21(1 \mathrm{H}, \mathrm{d}, 11-\mathrm{H}), \sim 7.4(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph} \mathrm{CH}_{2} \mathrm{SO}_{2}$).

Anal Calcd for $\mathrm{C}_{50} \mathrm{H}_{81} \mathrm{NO}_{15} \mathrm{SSi}: \mathrm{C} 60.28$, H 8.19, N 1.41, S 3.22.
Found: \quad C 60.12, H 8.25, N 1.29, S 3.19 .
5-O-(2,4,-Di-O-acetylmycaminosyl)-23-O-tert-butyldimethylsilyl-3-O-mesyltylonolide Dimethyl Acetal (7)

To a solution of $5(400 \mathrm{mg}, 0.48 \mathrm{mmol})$ in dry pyridine $(8 \mathrm{ml})$ was added methanesulfonyl chloride $(110 \mu \mathrm{l}, 1.43 \mathrm{mmol})$ and the solution was kept at room temperature for 3 hours. Usual work-up as described for 6 gave, after chromatography (hexane-acetone, $7: 3$), a solid of $7,402 \mathrm{mg}(92 \%),[\alpha]_{\mathrm{D}}^{20}-9^{\circ}(c 1$, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{MS} m / z 920(\mathrm{M}+1)^{+},{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.05(6 \mathrm{H}, \mathrm{s}, \mathrm{Ac} \times 2)$, $3.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right)$.

$$
\begin{array}{cl}
\text { Anal Calcd for } \mathrm{C}_{44} \mathrm{H}_{77} \mathrm{NO}_{15} \mathrm{SSi}: & \mathrm{C} 57.43, \mathrm{H} 8.43, \mathrm{~N} 1.52, \mathrm{~S} 3.48 . \\
\text { Found: } & \text { C } 57.42, \mathrm{H} 8.42, \mathrm{~N} 1.42, \mathrm{~S} 3.44 .
\end{array}
$$

5-O-(2,4-Di- O-acetylmycaminosyl)-23-O-tert-butyldimethylsilyl-3-deoxy-3,4-didehydrotylonolide (9)
From 6: To a solution of $6(980 \mathrm{mg}, 0.84 \mathrm{mmol})$ in dry 2-butanone $(20 \mathrm{ml})$ was added $\mathrm{NaI}(443 \mathrm{mg}$, 2.95 mmol) and the mixture was stirred for 8 hours at $80^{\circ} \mathrm{C}$ under the atmosphere of nitrogen. After cooled to room temperature, the mixture was filtered, and the solution was concentrated. The residue was extracted with toluene, and the solution was washed with 10% aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue gave two spots at $\operatorname{Rf} 0.33$ (major, 9) and $0.25(\mathbf{8})$; the products were separated by column chromatography with hexane - acetone ($7: 3$) to give solids of $9,641 \mathrm{mg}(84 \%$ based on $\mathbf{5})$ and $\mathbf{8}, 87 \mathrm{mg}(11 \%)$.

8: $[\alpha]_{\mathrm{D}}^{20}+2^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right)$; MS $m / z 950(\mathrm{M}+1)^{+},{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.90(9 \mathrm{H}, \mathrm{s}$, tert-butyl), 1.80 $\left(3 \mathrm{H}, \mathrm{s}, 22-\mathrm{CH}_{3}\right), 2.02$ and 2.03 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Ac} \times 2$), $2.32\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.33\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} 2^{\prime}}=7.9 \mathrm{~Hz}\right.$, $\left.1^{\prime}-\mathrm{H}\right), 4.55\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{SO}_{2}\right), 4.71\left(1 \mathrm{H}, \mathrm{t}, J=9.8 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 4.85\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}}=10 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 4.95$ $(1 \mathrm{H}$, brd, $3-\mathrm{H}), 5.97\left(1 \mathrm{H}, \mathrm{d}, J_{13,14}=10.4 \mathrm{~Hz}, 13-\mathrm{H}\right), 6.28\left(1 \mathrm{H}, \mathrm{d}, J_{10,11}=15.9 \mathrm{~Hz}, 10-\mathrm{H}\right), 7.34(1 \mathrm{H}, \mathrm{d}$, $11-\mathrm{H})$, and $9.74(1 \mathrm{H}, \mathrm{s}, 20-\mathrm{H})$.

9: $[\alpha]_{\mathrm{D}}^{22}-28^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathrm{MS} m / z 778(\mathrm{M}+1)^{+},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.89(9 \mathrm{H}, \mathrm{s}$, tert-butyl), 1.61 $\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 1.79\left(3 \mathrm{H}, \mathrm{s}, 22-\mathrm{CH}_{3}\right), 2.05(6 \mathrm{H}, \mathrm{s}, \mathrm{Ac} \times 2), 2.34\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.13\left(1 \mathrm{H}, \mathrm{brd}, 1^{\prime}-\mathrm{H}\right)$, $4.31(1 \mathrm{H}, \mathrm{brs}, 5-\mathrm{H}), 5.57(1 \mathrm{H}$, br s, $3-\mathrm{H}), 5.81\left(1 \mathrm{H}, \mathrm{d}, J_{13,14}=10.4 \mathrm{~Hz}, 13-\mathrm{H}\right), 6.17\left(1 \mathrm{H}, \mathrm{d}, J_{10,11}=15.3 \mathrm{~Hz}\right.$, $10-\mathrm{H}), 7.12(1 \mathrm{H}, \mathrm{d}, 11-\mathrm{H})$, and $9.70(1 \mathrm{H}, \mathrm{s}, 20-\mathrm{H})$.

Anal Calcd for $\mathrm{C}_{41} \mathrm{H}_{67} \mathrm{NO}_{11} \mathrm{Si} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$: C $62.56, \mathrm{H} 8.71, \mathrm{~N} 1.78$. Found: \quad C 62.80, H 8.56, N 1.76.

From 7: To a solution of $7(170 \mathrm{mg}, 0.19 \mathrm{mmol})$, in dry 2-butanone $(3.4 \mathrm{ml})$ was added $\mathrm{NaI}(83 \mathrm{mg}$, 0.55 mmol) and the mixture was stirred for 18 hours at $80^{\circ} \mathrm{C}$ under the atmosphere of nitrogen. After usual post-treatment, the crude product was purified by column chromatography with hexane-acetone (14:5) to give a solid of 9 , which was identical with the specimen prepared from $6,96 \mathrm{mg}(67 \%)$, and another solid (possibly the $3-O$-mesyl analog of 8), $17 \mathrm{mg}(11 \%)$, MS $m / z 874(\mathrm{M}+1)^{+},{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.19$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right)$.
residue, which was washed with aq NaHCO_{3}. The product was purified by chromatography with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq NH_{3} (18:1:0.1) to give a solid of $10,431 \mathrm{mg}(88 \%)$, $\left.[\alpha]_{\mathrm{D}}^{20}-32^{\circ}(c), \mathrm{CHCl}_{3}\right)$; $\mathrm{MS} m / z 694(\mathrm{M}+1)^{+},{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.95\left(3 \mathrm{H}, \mathrm{t}, J_{16,17}=7.3 \mathrm{~Hz}, 17-\mathrm{CH}_{3}\right), 1.18\left(3 \mathrm{H}, \mathrm{d}, J_{8.21}=6.8 \mathrm{~Hz}\right.$, $\left.21-\mathrm{CH}_{3}\right), 1.28\left(3 \mathrm{H}, \mathrm{d}, J_{5^{\prime}, 6^{\prime}}=6.3 \mathrm{~Hz}, 6^{\prime}-\mathrm{CH}_{3}\right), 1.69\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 1.80\left(3 \mathrm{H}, \mathrm{s}, 22-\mathrm{CH}_{3}\right), 2.49(6 \mathrm{H}, \mathrm{s}$, $\left.3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.04\left(1 \mathrm{H}, \mathrm{d}, \mathrm{I}^{\prime}-\mathrm{H}\right), 5.60(1 \mathrm{H}, \mathrm{brs}, 3-\mathrm{H}), 5.81(1 \mathrm{H}, \mathrm{d}, 13-\mathrm{H}), 6.16(1 \mathrm{H}, \mathrm{d}, 10-\mathrm{H}), 7.14(1 \mathrm{H}, \mathrm{d}$, $11-\mathrm{H})$, and $9.74(1 \mathrm{H}, \mathrm{s}, 20-\mathrm{H})$.

$$
\begin{array}{ll}
\text { Anal Calcd for } \mathrm{C}_{37} \mathrm{H}_{63} \mathrm{NO}_{9} \mathrm{Si} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}: & \mathrm{C} 63.21, \mathrm{H} 9.17, \mathrm{~N} 1.99 . \\
\text { Found: } & \text { C 63.48, H 9.08, N } 1.88 .
\end{array}
$$

3-Deoxy-3,4-didehydro-5-O-mycaminosyltylonolide (1)

To an ice-cold solution of $\mathbf{1 0}(230 \mathrm{mg})$ in THF (4.6 ml) was added $1 \mathrm{~m} \mathrm{aq} \mathrm{HCl}(2.3 \mathrm{ml})$, and the solution was heated for 2 hours at $40^{\circ} \mathrm{C}$. $\mathrm{TLC}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%\right.$ aq $\left.\mathrm{NH}_{3}, 10: 1: 0.1\right)$ of the solution gave a single spot at Rf 0.25 ($c f$. 10: Rf 0.35). Concentration to a small volume was followed by extraction of the residue with chloroform. The organic solution was washed with aq NaHCO_{3}, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq $\mathrm{NH}_{3}(15: 1: 0.1)$ to give a solid of 1, $163 \mathrm{mg}(85 \%)$, $[\alpha]_{\mathrm{D}}^{20}-21^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right)$; MS $m / z 580(\mathrm{M}+1)^{+},{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 0.96$ $\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, 17-\mathrm{CH}_{3}\right), 1.18\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, 21-\mathrm{CH}_{3}\right), 1.28\left(3 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, 6^{\prime}-\mathrm{CH}_{3}\right), 1.70(3 \mathrm{H}$, $\left.\mathrm{s}, 18-\mathrm{CH}_{3}\right), 1.84\left(3 \mathrm{H}, \mathrm{s}, 22-\mathrm{CH}_{3}\right), 2.52\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.05\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}=7.8 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 4.35(1 \mathrm{H}$, brs, $5-\mathrm{H}), 4.96(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}), 5.60(1 \mathrm{H}, \mathrm{brs}, 3-\mathrm{H}), 5.78\left(1 \mathrm{H}, \mathrm{d}, J_{13,14}=10 \mathrm{~Hz}, 13-\mathrm{H}\right), 6.18(1 \mathrm{H}, \mathrm{d}$, $\left.J_{10,1 \mathrm{I}}=16 \mathrm{~Hz}, 10-\mathrm{H}\right), 7.15(1 \mathrm{H}, \mathrm{d}, 11-\mathrm{H})$, and $9.73(1 \mathrm{H}, \mathrm{s}, 20-\mathrm{H})$.

Anal Calcd for $\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{NO}_{9} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}: \quad$ C $63.24, \mathrm{H} 8.56$, N 2.38.

$$
\text { Found: } \quad \text { C 63.51, H } 8.71, \mathrm{~N} 2.33 .
$$

23-O-tert-Butyldimetylsilyl-5-O-(4-deoxymycaminosyl)tylonolide Dimethyl Acetal (12)

Compound $11^{5}(10.00 \mathrm{~g})$ was treated with tert-butyldimethylsilyl chloride (2.88 g) in a manner as described for 4 . The crude product obtained (without chromatography) was recrystallized from ether to give 12 as crystals, $10.40 \mathrm{~g}(88 \%)$, mp $178.5 \sim 179^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{20}-4^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right)$; MS $m / z 742(\mathrm{M}+1)^{+},{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 0.89\left(9 \mathrm{H}, \mathrm{s}\right.$, tert-butyl), $1.09\left(3 \mathrm{H}, \mathrm{d}, 18-\mathrm{CH}_{3}\right), 1.77\left(3 \mathrm{H}, \mathrm{s}, 22-\mathrm{CH}_{3}\right), 2.27\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 3.24 and 3.45 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3} \times 2$).

Anal Calcd for $\mathrm{C}_{39} \mathrm{H}_{71} \mathrm{NO}_{10} \mathrm{Si} \cdot \mathrm{H}_{2} \mathrm{O}: \quad \mathrm{C} 61.62, \mathrm{H} 9.68, \mathrm{~N} 1.84$. Found:

C 61.94, H 9.51, N 1.81.

5-O-(2-O-Acetyl-4-deoxymycaminosyl)-23-O-tert-butyldimethylsilyltylonolide Dimethyl Acetal (13)
Compound $12(1.00 \mathrm{~g})$ was treated with acetic anhydride $(0.2 \mathrm{ml})$ as described for 5 to give, after chromatography $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 15: 1\right)$, a solid of $13,1.00 \mathrm{~g}(95 \%),[\alpha]_{\mathrm{D}}^{20}+21^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ $784(\mathrm{M}+1)^{+},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.10(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.30\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.22$ and $3.30($ each $3 \mathrm{H}, \mathrm{s}$, $\mathrm{OCH}_{3} \times 2$).

Anal Caled for $\mathrm{C}_{41} \mathrm{H}_{73} \mathrm{NO}_{11} \mathrm{Si}: \quad \mathrm{C} 62.80, \mathrm{H} 9.38, \mathrm{~N} 1.79$.
Found: \quad C 62.53, H 9.11, N 1.77
5-O-(2-O-Acetyl-4-deoxymycaminosyl)-3-O-phenylmethanesulfonyl-23-O-tert-butyldimethylsilyltylonolide Dimethyl Acetal (14)

Compound 13 (884 mg) was treated with phenylmethanesulfonyl chloride (390 mg) as described for 6 to give a solid of $14,1.05 \mathrm{~g}$ (quant.), which was used for the next step without purification, TLC: Rf $0.6\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 10: 1\right)(c f .11: \operatorname{Rf} 0.5) ; \mathrm{MS} m / z 938(\mathrm{M}+1)^{+},{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.89(9 \mathrm{H}, \mathrm{s}$, tert-butyl), $2.09(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 3.27$ and $3.33\left(\right.$ each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3} \times 2\right), 5.89(1 \mathrm{H}, \mathrm{d}, 13-\mathrm{H}), 6.26(1 \mathrm{H}, \mathrm{d}, 10-\mathrm{H})$, $\sim 7.4\left(5 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{SO}_{2}\right)$.

5-O-(2-O-Acetyl-4-deoxymycaminosyl)-23-O-tert-butyldimethylsilyl-3-deoxy-3,4-didehydrotylonolide Dimethyl Acetal (15)

A mixture of 14 ($950 \mathrm{mg}, 1.01 \mathrm{mmol}$) and $\mathrm{NaI}(456 \mathrm{mg}, 3.04 \mathrm{mmol})$ in dry 2-butanone (19 ml) was stirred for 6.5 hours at $80^{\circ} \mathrm{C}$. TLC (benzene-acetone, $2: 1$) of the solution showed a major spot at Rf 0.55 with weak spots ($\operatorname{Rf} 0.5,0.65$, and 0.7 ; cf. 14: $\operatorname{Rf} 0.6$). Similar treatment as described for 9 gave, after
chromatography (benzene-acetone, $3: 1$), a solid of $15,567 \mathrm{mg}(73 \%$ based on 13$),[\alpha]_{\mathrm{D}}^{20} 0^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right)$; MS $m / z 766(\mathrm{M}+1)^{+},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.89\left(9 \mathrm{H}, \mathrm{s}\right.$, tert-butyl), $1.61\left(3 \mathrm{H}, \mathrm{brs}, 18-\mathrm{CH}_{3}\right), 1.80(3 \mathrm{H}, \mathrm{s}$, $\left.22-\mathrm{CH}_{3}\right), 2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.30\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.27$ and $3.30\left(\right.$ each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3} \times 2\right), 4.13(1 \mathrm{H}, \mathrm{d}$, $\left.J_{1^{\prime}, 2^{\prime}}=7.9 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 4.33(1 \mathrm{H}$, br s, $5-\mathrm{H}), 4.83\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 4.98(1 \mathrm{H}$, br s, $3-\mathrm{H}), 5.74(1 \mathrm{H}, \mathrm{d}$, $\left.J_{13,14}=10.4 \mathrm{~Hz}, 13-\mathrm{H}\right), 6.15\left(1 \mathrm{H}, \mathrm{d}, J_{10,11}=15.9 \mathrm{~Hz}, 10-\mathrm{H}\right)$, and $7.09(1 \mathrm{H}, \mathrm{d}, 11-\mathrm{H})$.

Anal Calcd for $\mathrm{C}_{41} \mathrm{H}_{71} \mathrm{NO}_{10} \mathrm{Si} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}: \quad \mathrm{C} 63.53, \mathrm{H} 9.36, \mathrm{~N} 1.81$. Found:

C 63.78, H 9.11, N 1.80 .

23-O-tert-Butyldimethylsilyl-3-deoxy-5-O-(4-deoxymycaminosyl)-3,4-didehydrotylonolide Dimethyl Actal (16)

Compound $15(396 \mathrm{mg})$ in methanol (8 ml) was treated as described for $\mathbf{1 0}$ to give a solid of $\mathbf{1 5}, 324 \mathrm{mg}$ $(87 \%),[\alpha]_{\mathrm{D}}^{20}-16^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathrm{MS} m / z 724(\mathrm{M}+1)^{\dagger},{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.75\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 1.81$ $\left(3 \mathrm{H}, \mathrm{s}, 22-\mathrm{CH}_{3}\right), 2.28\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.47(1 \mathrm{H}$, br s, $3-\mathrm{H}), 5.78(1 \mathrm{H}, \mathrm{d}, 13-\mathrm{H}), 6.20(1 \mathrm{H}, \mathrm{d}, 10-\mathrm{H})$, and $7.12(1 \mathrm{H}, \mathrm{d}, 11-\mathrm{H})$.

```
Anal Calcd for }\mp@subsup{\textrm{C}}{39}{}\mp@subsup{\textrm{H}}{69}{}\mp@subsup{\textrm{NO}}{9}{}\textrm{Si}\cdot\frac{-1}{4}\mp@subsup{\textrm{H}}{2}{}\textrm{O}: C 64.29, H 9.62, N 1.92.
    Found: C C64.21, H 9.45, N 1.94.
```

3-Deoxy-5-O-(4-deoxymycaminosyl)-3,4-didehydrotylonolide (2)
From 16: A solution of 16 (199 mg) in THF (4 ml) was treated with 1 m aq $\mathrm{HCl}(2 \mathrm{ml})$ as described for 1 to give a solid of $2,135 \mathrm{mg}(87 \%)$. $[\alpha]_{\mathrm{D}}^{27}-28^{\circ}\left(c \quad 1, \mathrm{CHCl}_{3}\right) ; \mathrm{MS} \mathrm{m} / z 564(\mathrm{M}+1)^{+},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.96\left(3 \mathrm{H}, \mathrm{t}, 17-\mathrm{CH}_{3}\right), 1.18\left(3 \mathrm{H}, \mathrm{d}, J=6.35 \mathrm{~Hz}, 21-\mathrm{CH}_{3}\right.$ or $\left.6^{\prime}-\mathrm{CH}_{3}\right), 1.20(3 \mathrm{H}, \mathrm{d}, J=5.86 \mathrm{~Hz}$, $6^{\prime}-\mathrm{CH}_{3}$ or $\left.21-\mathrm{CH}_{3}\right), 1.76\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 1.83\left(3 \mathrm{H}, \mathrm{d}, J_{13,22}=\sim 1 \mathrm{~Hz}, 22-\mathrm{CH}_{3}\right), 2.27\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $2.35(1 \mathrm{H}, \mathrm{dd}, 2 \mathrm{a}-\mathrm{H}), 2.45\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 2.75(1 \mathrm{H}, \mathrm{dd}, 2 \mathrm{~b}-\mathrm{H}), 3.22\left(1 \mathrm{H}, \mathrm{dd}, J_{1^{\prime}, 2^{\prime}}=7.3 \mathrm{~Hz}\right.$ and $J_{2^{\prime}, 3^{\prime}}=10 \mathrm{~Hz}$, $\left.2^{\prime}-\mathrm{H}\right), 4.00\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right), 4.36(1 \mathrm{H}$, br s, $5-\mathrm{H}), 4.94(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}), 5.55(1 \mathrm{H}, \mathrm{t}, 3-\mathrm{H}), 5.57(1 \mathrm{H}$, br d, $\left.J_{13,14}=10 \mathrm{~Hz}, 13-\mathrm{H}\right), 6.23\left(1 \mathrm{H}, \mathrm{d}, J_{10,11}=16 \mathrm{~Hz}, 10-\mathrm{H}\right), 7.14(1 \mathrm{H}, \mathrm{d}, 11-\mathrm{H})$, and $9.76(1 \mathrm{H}, \mathrm{s}, 20-\mathrm{H})$.

Anal Calcd for $\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{NO}_{8} \cdot \frac{1}{4} \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 65.53, \mathrm{H} 8.69$, N 2.47.
Found: \quad C 65.55, H 8.57, N 2.13.
From 24: A solution of $24(155 \mathrm{mg})$ in acetonitrile $(2.3 \mathrm{ml})-0.5 \mathrm{~m}$ aq $\mathrm{HCl}(4.6 \mathrm{ml})$ was heated for 2 hours at $40^{\circ} \mathrm{C}$, and treated as described above to give a solid of $2,86.6 \mathrm{mg}(76 \%)$, the product being identical with 2 obtained from 16.

23-O-tert-Butyldimethylsilyl-5-O-mycaminosyltylonolide 9,20-Bis(ethylene acetal) (18)

A mixture of $17^{7)}(3.00 \mathrm{~g})$, imidazole (536 mg) and tert-butyldimethylsilyl chloride (990 mg) in dry DMF (24 ml) were treated as described for 4 to give a solid of $\mathbf{1 8}, 3.01 \mathrm{~g}(86 \%),[\alpha]_{\mathrm{D}}^{21}-10^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right)$; MS $m / z 800(\mathrm{M}+1)^{+}$.
$\begin{array}{ll}\text { Anal Calcd for } \mathrm{C}_{41} \mathrm{H}_{73} \mathrm{NO}_{12} \mathrm{Si} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}: & \mathrm{C} 60.86, \mathrm{H} 9.22, \mathrm{~N} 1.73 . \\ \text { Found: } & \text { C } 60.84, \mathrm{H} 9.04, \mathrm{~N} 1.83 .\end{array}$

3-O-Phenylmethanesulfonyl-5-O-[4-O-(phenylmethanesulfonyl)mycaminosyl]-23-O-tert-butyldimethylsilyl)tylonolide 9,20 -Bis(ethylene acetal) (19)

To a cold $\left(-40^{\circ} \mathrm{C}\right)$ solution of $18(1.00 \mathrm{~g}, 1.25 \mathrm{mmol})$ in dry pyridine $(20 \mathrm{ml})$ was added phenylmethanesulfonyl chloride ($670 \mathrm{mg}, 3.51 \mathrm{mmol}$) and the solution was kept at $-20^{\circ} \mathrm{C}$ for 1.5 hours. Water (0.7 ml) was added and working-up as described for 6 gave a solid of $19,1.38 \mathrm{~g}$ (quant.), which was unstable, and used for the next step without purification.

3-O-Phenylmethanesulfonyl-23-O-tert-butyldimethylsilyl-5-O-(4-deoxy-4-iodomycaminosyl)tylonolide $9,20-$ Bis(ethylene acetal) (20)

A mixture of $19(415 \mathrm{mg}, 0.38 \mathrm{mmol})$ and $\mathrm{NaI}(141 \mathrm{mg}, 0.94 \mathrm{mmol})$ in dry 2-butanone $(6.2 \mathrm{ml})$ was stirred for 30 minutes at $80^{\circ} \mathrm{C}$ under the atmosphere of nitrogen. On TLC (cyclohexane-acetone, $3: 1$), the solution showed a major spot at $\operatorname{Rf} 0.4$ with a very weak spot at $\operatorname{Rf} 0.33$ (cf. 19: $\operatorname{Rf} 0.28$). Work-up as described for 9 (for chromatography, cyclohexane - acetone, $7: 2$ was used) gave a solid of $20,290 \mathrm{mg}$ $(73 \%),[\alpha]_{\mathrm{D}}^{27}-70^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right)$; MS m/z $1,064(\mathrm{M}+1)^{+},{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.88(9 \mathrm{H}$, s, tert-butyl), $0.93\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, 17-\mathrm{CH}_{3}\right), 0.97\left(3 \mathrm{H}, \mathrm{d}, 18-\mathrm{CH}_{3}\right.$ or $\left.21-\mathrm{CH}_{3}\right), 1.02\left(3 \mathrm{H}, \mathrm{d}, 21-\mathrm{CH}_{3}\right.$ or $\left.18-\mathrm{CH}_{3}\right), 1.48$
$\left(3 \mathrm{H}, \mathrm{d}, J_{5^{\prime}, 6^{\prime}}=6 \mathrm{~Hz}, 6^{\prime}-\mathrm{CH}_{3}\right), 1.71\left(3 \mathrm{H}\right.$, br s, $\left.22-\mathrm{CH}_{3}\right), 2.54\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), \sim 3.37\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 4.38$ $\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}=7.5 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 4.50\left(2 \mathrm{H}\right.$, br s, $\left.\mathrm{PhCH}_{2} \mathrm{SO}_{2}\right), 5.48\left(1 \mathrm{H}\right.$, br d, $\left.J_{13,14}=10 \mathrm{~Hz}, 13-\mathrm{H}\right), 5.59(1 \mathrm{H}$, $\left.\mathrm{d}, J_{10,11}=16 \mathrm{~Hz}, 10-\mathrm{H}\right)$, and $6.37(1 \mathrm{H}, \mathrm{d}, 11-\mathrm{H})$.

Anal Caled for $\mathrm{C}_{48} \mathrm{H}_{78} \mathrm{INO}_{13} \mathrm{SSi}: \mathrm{C} 54.17, \mathrm{H} 7.39, \mathrm{~N} 1.32, \mathrm{I} 11.92$. Found: C 54.09, H 7.27, N 1.08, I 11.95.

23-O-tert-Butyldimethylsilyl-3-deoxy-5-O-(4-deoxy-4-iodomycaminosyl)-3,4-didehydrotylonolide 9,20-Bis(ethylene acetal) (21)

From 19: A mixture of $19(1.32 \mathrm{~g}, 1.19 \mathrm{mmol})$ and $\mathrm{NaI}(940 \mathrm{mg}, 6.27 \mathrm{mmol})$ in dry 2-butanone (25 ml) was stirred for 6 hours at $80^{\circ} \mathrm{C}$ under the atmosphere of nitrogen. On TLC (benzene-ethyl acetate, $4: 1$), the solution showed several spots at Rf 0 (major), 0.3 (major, 21), 0.43 (minor, 20), 0.47 (slight, 19), and 0.6 (slight). Subsequent work-up as described for 9 followed by chromatography (benzene-ethyl acetate, $5.5: 1)$ gave a solid of $\mathbf{2 1}, 330 \mathrm{mg}(31 \%$ based on $\mathbf{1 8})$ and a solid of $\mathbf{2 0}, 130 \mathrm{mg}(10 \%$ based on $\mathbf{1 8})$.

21: $[\alpha]_{\mathrm{D}}^{27}-72^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathrm{MS} \mathrm{m} / z 892(\mathrm{M}+1)^{+},{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.95\left(3 \mathrm{H}, \mathrm{t}, 17-\mathrm{CH}_{3}\right), 0.97$ $\left(3 \mathrm{H}, \mathrm{d}, 21-\mathrm{CH}_{3}\right), 1.51\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{CH}_{3}\right), 1.57\left(3 \mathrm{H}\right.$, br s, $\left.18-\mathrm{CH}_{3}\right), 1.70\left(3 \mathrm{H}, \mathrm{s}, 22-\mathrm{CH}_{3}\right), 2.54(6 \mathrm{H}, \mathrm{s}$, $\left.3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.39\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 4.14\left(1 \mathrm{H}, \mathrm{d}, \mathrm{l}^{\prime}-\mathrm{H}\right), 5.41(1 \mathrm{H}, \mathrm{d}, 13-\mathrm{H}), 5.43(1 \mathrm{H}, \mathrm{t}, 3-\mathrm{H}), 5.56(1 \mathrm{H}, \mathrm{d}$, $10-\mathrm{H})$, and $6.31(1 \mathrm{H}, \mathrm{d}, 11-\mathrm{H})$.

```
Anal Calcd for C}\mp@subsup{\textrm{C}}{41}{}\mp@subsup{\textrm{H}}{70}{}\mp@subsup{\textrm{INO}}{10}{}\textrm{Si}:\quad\textrm{C}55.21,H7.91, I 14.23,N 1.57
    Found: C 55.09, H 7.80, I 13.97, N 1.47.
```

From 20: A mixture of $20(120 \mathrm{mg})$ and $\mathrm{NaI}(85 \mathrm{mg})$ in dry 2-butanone-DMF ($10: 1,2.6 \mathrm{ml}$) was stirred for 6 hours at 80° under the atmosphere of nitrogen. Work-up as described above gave a solid of 21, $40 \mathrm{mg}(40 \%)$.

5-O-(4-Bromo-4-deoxymycaminosyl)-23-O-tert-butyldimethylsilyl-3-deoxy-3,4-didehydrotylonolide 9,20-Bis(ethylene acetal) (22)

A mixture of $19(150 \mathrm{mg}, 0.14 \mathrm{mmol})$ and $\mathrm{LiBr}(59 \mathrm{mg}, 0.68 \mathrm{mmol})$ in dry 2-butanone (3 ml) was stirred for 6 hours at $80^{\circ} \mathrm{C}$. TLC (benzene-ethyl acetate, $4: 1$) of the solution showed spots at Rf 0 (major), 0.23 (major, 22), 0.3 (slight), and 0.4 (slight). Subsequent work-up as described for 9 followed by chromatography (benzene-ethyl acetate, $4: 1$) gave a slightly unstable solid of $22,47 \mathrm{mg}(41 \%)$, and a product mixture (41 mg) having Rf 0 (eluted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}, 10: 1$).

22: $[\alpha]_{\mathrm{D}}^{20}-47^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right)$; MS $m / z 844$ and 846 (both $\left.(\mathrm{M}+1)^{+}\right), 236$ and $238,{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 0.89\left(9 \mathrm{H}, \mathrm{s}\right.$, tert-butyl), $1.42\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{CH}_{3}\right), 2.58\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.69\left(1 \mathrm{H}, \mathrm{t}, J_{2^{\prime}, 3^{\prime}}=J_{3^{\prime}, 4^{\prime}}=10 \mathrm{~Hz}\right.$, $\left.3^{\prime}-\mathrm{H}\right), 4.18\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right), 5.41(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}, 13-\mathrm{H}), 5.42(1 \mathrm{H}$, br s, $3-\mathrm{H}), 5.56(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, 10-\mathrm{H})$, and $6.32(1 \mathrm{H}, \mathrm{d}, 11-\mathrm{H})$.

Anal Calcd for $\mathrm{C}_{41} \mathrm{H}_{70} \mathrm{BrNO}_{10} \mathrm{Si} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}: ~ \mathrm{C} 57.66, \mathrm{H} 8.50$, N 1.64 .
Found: \quad C 57.85, H 8.25, N 1.58 .

23-O-tert-Butyldimethylsilyl-5-O-(4-chloro-4-deoxymycaminosyl)-3-deoxy-3,4-didehydrotylonolide 9,20-Bis(ethylene acetal) (23)

A mixture of $19(150 \mathrm{mg}, 0.14 \mathrm{mmol})$ and $\mathrm{Et}_{4} \mathrm{NCl}(68 \mathrm{mg}, 0.41 \mathrm{mmol})$ in dry 2-butanone (3 ml) was stirred for 6 hours at $80^{\circ} \mathrm{C}$. TLC (benzene-ethyl acetate, $4: 1$) of the solution showed spots at Rf 0 (major), 0.17 (major, 23), and 0.2 (slight; possibly 3 - O-benzylsulfonyl-4'-chloro-4'-deoxy derivative), together with several slight sports. Chromatography (benzene-ethyl acetate, $4: 1$) of the crude mixture gave a slightly unstable solid of $\mathbf{2 3}, 40 \mathrm{mg}(37 \%)$, and a product mixture (36 mg) having $\operatorname{Rf} 0$ (eluted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}, 10: 1$).

23: $[\alpha]_{\mathrm{D}}^{20}-45^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathrm{MS} m / z 800\left[\mathrm{M}+1 \text { (for the }{ }^{35} \mathrm{Cl} \text { isomer) }\right]^{+}, 192$ and 194 (3:1 in strength), ${ }^{1} \mathrm{H}^{\prime} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.89\left(9 \mathrm{H}, \mathrm{s}\right.$, tert-butyl), $1.36\left(3 \mathrm{H}, \mathrm{d}, 6{ }^{\prime}-\mathrm{CH}_{3}\right), 2.55\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.58(1 \mathrm{H}, \mathrm{t}$, $\left.J_{3^{\prime} .4^{\prime}}=J_{4^{\prime}, 5^{\prime}}=10 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 4.17\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right), 5.40(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}, 13-\mathrm{H}), 5.41(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{H}), 5.56$ $\left(1 \mathrm{H}, \mathrm{d}, J_{10,11}=16 \mathrm{~Hz}, 10-\mathrm{H}\right)$, and $6.31(1 \mathrm{H}, \mathrm{d}, 11-\mathrm{H})$.

Anal Calcd for $\mathrm{C}_{41} \mathrm{H}_{70} \mathrm{ClNO}_{10} \mathrm{Si} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}: \quad \mathrm{C} 60.82, \mathrm{H} 8.84, \mathrm{Cl} 4.38, \mathrm{~N} 1.73$.

$$
\text { Found: } \quad \text { C } 60.93, \mathrm{H} 8.82, \mathrm{Cl} 4.52, \mathrm{~N} 1.70 .
$$

23-O-tert-Butyldimethylsilyl-3-deoxy-5-O-(4-deoxymycaminosyl)-3,4-didehydrotylonolide 9,20Bis(ethylene Acetal) (24)

To a solution of $21(230 \mathrm{mg}, 0.26 \mathrm{mmol})$ in benzene (7.5 ml) were added $\mathrm{Bu}_{3} \mathrm{SnH}(0.22 \mathrm{ml}, 0.82 \mathrm{mmol})$ and AIBN (10 mg), and the solution was heated under the atmosphere of Ar for 2 hours at $80^{\circ} \mathrm{C}$. On TLC with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq $\mathrm{NH}_{3}(10: 1: 0.1)$, the solution showed a single spot at Rf 0.5 (cf. 21: Rf 0.9). Concentration gave a residue, that was chromatographed by successive use of cyclohexane-acetone $(3: 1,250 \mathrm{ml}) \rightarrow \mathrm{CHCl}_{3}(120 \mathrm{ml}) \rightarrow \mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq $\mathrm{NH}_{3}(10: 1: 0.1)$ to give a stannane-free solid of $24,185 \mathrm{mg}(94 \%),[\alpha]_{\mathrm{D}}^{27}-53^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right)$; MS $m / z 766(\mathrm{M}+1)^{+},{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.89(9 \mathrm{H}, \mathrm{s}$, tert-butyl), $1.23\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{CH}_{3}\right), 2.30\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.30\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 4.08(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}$, $\left.1^{\prime}-\mathrm{H}\right), 5.40(1 \mathrm{H}$, br s, $3-\mathrm{H}), 5.40(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}, 13-\mathrm{H}), 5.57\left(1 \mathrm{H}, \mathrm{d}, J_{10,11}=16 \mathrm{~Hz}, 10-\mathrm{H}\right)$, and $6.31(1 \mathrm{H}$, d, $11-\mathrm{H})$.

```
Anal Calcd for C }\mp@subsup{\textrm{C}}{41}{}\mp@subsup{\textrm{H}}{71}{}\mp@subsup{\textrm{NO}}{10}{}\mp@subsup{\textrm{Si}}{1}{}\cdot\mp@subsup{\textrm{H}}{2}{}\textrm{O}: C 62.80, H 9.13, N 1.79.
Found: C 63.02,H 9.12, N 1.76.
```


Desmycosin 20-(Ethylene Acetal) (25)

A mixture of tylosin (10.65 g), ethylene glycol (50 ml), camphorsulfonic acid (3.48 g) and acetonitrile (50 ml) was kept for 1 hour at room temperature. The solution was poured into a $0.1 \mathrm{~m} \mathrm{aq} \mathrm{K}_{2} \mathrm{CO}_{3}(170 \mathrm{ml})$ and the mixture was extracted with toluene. The organic solution was concentrated and the residue was chromatographed $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%\right.$ aq $\left.\mathrm{NH}_{3}, 15: 1: 0.1\right)$ to give a solid of $25,6.52 \mathrm{~g}(80 \%),[\alpha]_{\mathrm{D}}^{20}$ $-26^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathrm{MS} m / z 816(\mathrm{M}+1)^{+},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.26\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime \prime}-\mathrm{CH}_{3}\right), 1.31\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{CH}_{3}\right)$, $2.50\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.48$ and $3.56\left(\right.$ each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3} \times 2\right), 4.32\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}=7.3 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 4.56$ $\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime \prime}, 2^{\prime \prime}}=7.8 \mathrm{~Hz}, 1^{\prime \prime}-\mathrm{H}\right), 5.88(1 \mathrm{H}$, unresolved s, 13-H), $6.23(1 \mathrm{H}$, unresolved $\mathrm{s}, 10-\mathrm{H})$, and $7.28(1 \mathrm{H}$, unresolved s, 11-H).

Anal Calcd for $\mathrm{C}_{41} \mathrm{H}_{69} \mathrm{NO}_{15} \cdot \mathrm{H}_{2} \mathrm{O}:$ C $59.05, \mathrm{H} 8.58, \mathrm{~N} 1.68$.
Found: \quad C 59.23, H 8.60 , N 1.64.

$2^{\prime}, 4^{\prime}, 4^{\prime \prime}$-Tri- O-acetyldesmycosin 20 -(Ethylene Acetal) (26)

A solution of $25(1.00 \mathrm{~g}, 1.23 \mathrm{mmol})$ and acetic anhydride $(0.28 \mathrm{ml}, 2.94 \mathrm{mmol})$ in acetonitrile (15 ml) was kept overnight at room temperature. After concentration to a small volume, toluene (40 ml) was added, and the solution was washed vigorously with aq NaHCO_{3}, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give the corresponding crude $2^{\prime}, 4^{\prime}$-di- O-acetyl derivative, 1.1 g ; Rf 0.7 (toluene - ethyl acetate, $1: 2$) ($c f .25$: Rf 0.35). After dryness, the solid was dissolved in dry pyridine (16 ml) containing acetic anhydride (0.116 ml , 1.23 mmol) and the solution was kept for 2 days at room temperature. On TLC (benzene-acetone, $2: 1$), the solution showed two spots at Rf 0.45 (minor, the $2^{\prime}, 4^{\prime}$-di- O-acetyl derivative) and 0.7 (26). After work-up in a usual manner, the product was chromatographed with benzene-acetone ($3: 1$) to give a solid of $26,818 \mathrm{mg}(71 \%)$ along with the di- O-acetyl derivative, $187 \mathrm{mg}(17 \%)$.

26: $[\alpha]_{\mathrm{D}}^{20}-3^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathrm{MS} m / z 942(\mathrm{M}+1)^{+},{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta \sim 1.18\left(9 \mathrm{H}, \mathrm{br}, 21-, 6^{\prime}\right.$-, and $\left.6^{\prime \prime}-\mathrm{CH}_{3}\right), 2.05,2.06$ and 2.11 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Ac} \times 3$), $2.43\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.47$ and 3.52 (each $3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3} \times 2\right), \sim 4.40\left(1 \mathrm{H}\right.$, br s, $\left.1^{\prime}-\mathrm{H}\right), 4.43\left(1 \mathrm{H}, \mathrm{dd}, 4^{\prime \prime}-\mathrm{H}\right), 4.62\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime \prime}-\mathrm{H}\right), 4.77\left(1 \mathrm{H}, \mathrm{t}, 4^{\prime}-\mathrm{H}\right), \sim 4.94$ $\left(3 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}, 20-\mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.88(1 \mathrm{H}, \mathrm{d}, 13-\mathrm{H}), 6.27(1 \mathrm{H}, \mathrm{d}, 10-\mathrm{H})$, and $7.33(1 \mathrm{H}, \mathrm{d}, 11-\mathrm{H})$.

Anal Calcd for $\mathrm{C}_{47} \mathrm{H}_{75} \mathrm{NO}_{18}: ~ \mathrm{C} 59.92, \mathrm{H} 8.02, \mathrm{~N} 1.49$.
Found: \quad C 59.75, H 8.02, N 1.42 .
$2^{\prime}, 4^{\prime}, 4^{\prime \prime}$-Tri-O-acetyl-3-O-(phenylmethanesulfonyl)desmycocin 20-(Ethylene Acetal) (27)
Compound 26 ($900 \mathrm{mg}, 0.96 \mathrm{mmol}$) was treated with phenylmethanesulfonyl chloride (370 mg , 1.94 mmol) in pyridine (14 ml) in a manner as described for 6 to give a slightly unstable solid of $27,1.07 \mathrm{~g}$ (quant.); Rf 0.45 (toluene-ethyl acetate, $1: 2$) (cf. 26: Rf 0.4).

$2^{\prime}, 4^{\prime}, 4^{\prime \prime}$-Tri- O-acetyl-3-deoxy-3,4-didehydrodesmycocin 20-(Ethylene Acetal) (28)

A mixture of $27(1.10 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $\mathrm{NaI}(450 \mathrm{mg}, 3.0 \mathrm{mmol})$ in 2-butanone (17 ml) was stirred for 15 hours at $80^{\circ} \mathrm{C}$. On TLC (toluene-ethyl acetate, $1: 2$) the upper solution showed a spot at Rf 0.38 . Post-treatment as described for 9 gave, after chromatography (toluene - ethyl acetate, $4: 5 \rightarrow 3: 5$), a solid of 28, $618 \mathrm{mg}\left(67 \%\right.$ based on 26), $[\alpha]_{\mathrm{D}}^{20}-18^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathrm{MS} m / z 924(\mathrm{M}+1)^{+},{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$
$\delta 0.94\left(3 \mathrm{H}, \mathrm{t}, 17-\mathrm{CH}_{3}\right), 1.14,1.17$, and $1.18\left(\right.$ each $3 \mathrm{H}, \mathrm{d}, 21-, 6^{\prime}-$, and $\left.6^{\prime \prime}-\mathrm{CH}_{3}\right), 1.60\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 1.79$ $\left(3 \mathrm{H}, \mathrm{s}, 22-\mathrm{CH}_{3}\right), 2.03,2.05$, and 2.11 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{Ac} \times 3\right), 2.34\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.46$ and 3.52 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3} \times 2\right), 4.19\left(1 \mathrm{H}, \mathrm{d}, \mathrm{l}^{\prime}-\mathrm{H}\right), 4.43\left(1 \mathrm{H}, \mathrm{brd}, 4^{\prime \prime}-\mathrm{H}\right), 4.61\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime \prime}-\mathrm{H}\right), 4.76\left(1 \mathrm{H}, \mathrm{t}, 4^{\prime}-\mathrm{H}\right), \sim 4.95$ $\left(3 \mathrm{H}, \mathrm{br}, 15-, 20-\right.$, and $\left.2^{\prime}-\mathrm{H}\right), 5.49(1 \mathrm{H}, \mathrm{br}, 3-\mathrm{H}), 5.76(1 \mathrm{H}, \mathrm{d}, 13-\mathrm{H}), 6.14(1 \mathrm{H}, \mathrm{d}, 10-\mathrm{H})$, and $7.10(1 \mathrm{H}, \mathrm{d}$, $11-\mathrm{H}$).
$\begin{array}{cl}\text { Anal Calcd for } \mathrm{C}_{47} \mathrm{H}_{73} \mathrm{NO}_{17} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}: & \mathrm{C} 60.50, \mathrm{H} 7.99, \mathrm{~N} 1.51 . \\ \text { Found: } & \mathrm{C} 60.33, \mathrm{H} 8.00, \mathrm{~N} 1.47 .\end{array}$
4"-O-Acetyl-3-deoxy-3,4-didehydrodesmycosin 20-(Ethylene Acetal) (29)
A solution of $28(120 \mathrm{mg})$ in methanol $(2.5 \mathrm{ml})$ was heated overnight at $50^{\circ} \mathrm{C}$. The crude product obtained was chromatographed with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(10: 1)$ to give a solid of $29,108 \mathrm{mg}(99 \%),[\alpha]_{\mathrm{D}}^{20}-14^{\circ}(c 1$, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 840(\mathrm{M}+1)^{+},{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.68\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 1.83\left(3 \mathrm{H}, \mathrm{s}, 22-\mathrm{CH}_{3}\right), 2.12$ $\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{Ac}\right), \sim 2.8\left(6 \mathrm{H}\right.$, br s, $\left.3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.46$ and $3.52\left(\right.$ each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3} \times 2\right), 4.09\left(1 \mathrm{H}, \mathrm{d}^{\prime}, 1^{\prime}-\mathrm{H}\right)$, $4.43\left(1 \mathrm{H}\right.$, brd, $\left.4^{\prime \prime}-\mathrm{H}\right), 4.62\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime \prime}-\mathrm{H}\right), 5.37(1 \mathrm{H}$, br s, $3-\mathrm{H}), 5.85(1 \mathrm{H}, \mathrm{d}, 13-\mathrm{H}), 6.10(1 \mathrm{H}, \mathrm{d}, 10-\mathrm{H})$, and $7.29(1 \mathrm{H}, \mathrm{d}, 11-\mathrm{H})$.

```
Anal Calcd for \(\mathrm{C}_{43} \mathrm{H}_{69} \mathrm{NO}_{15} \cdot \mathrm{H}_{2} \mathrm{CO}_{3}\) : C \(58.58, \mathrm{H} 7.93\), N 1.55 .
    Found: \(\quad\) C 58.41, H 7.78, N 1.56.
```

4"-O-Acetyl-3-deoxy-3,4-didehydrodesmycosin (30)
To an ice-cold solution of $29(310 \mathrm{mg})$ in THF $(6.2 \mathrm{ml})$ was added $1 \mathrm{~m} \mathrm{aq} \mathrm{HCl}(3.1 \mathrm{ml})$, and the solution was heated for 1.5 hours at $40^{\circ} \mathrm{C}$. Work-up as described for 1 gave, after chromatography $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}\right.$, $15: 1 \rightarrow 12: 1)$, a solid of $\mathbf{3 0}, 245 \mathrm{mg}(84 \%),[\alpha]_{\mathrm{D}}^{20}-15^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathrm{MS} m / z 796(\mathrm{M}+1)^{+},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.68\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 1.81\left(3 \mathrm{H}, \mathrm{s}, 22-\mathrm{CH}_{3}\right), 2.12\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{Ac}\right), 2.79\left(6 \mathrm{H}, \mathrm{brs}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 3.47 and $3.52\left(\right.$ each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3} \times 2\right), 4.07\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right), 4.44\left(1 \mathrm{H}, \mathrm{brd}, 4^{\prime \prime}-\mathrm{H}\right), 4.62\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime \prime}-\mathrm{H}\right), 5.54$ $(1 \mathrm{H}$, brs, $3-\mathrm{H}), 5.82(1 \mathrm{H}, \mathrm{d}, 13-\mathrm{H}), 6.11(1 \mathrm{H}, \mathrm{d}, 10-\mathrm{H}), 7.22(1 \mathrm{H}, \mathrm{d}, 11-\mathrm{H})$, and $9.73(1 \mathrm{H}, \mathrm{s}, 20-\mathrm{H})$.

Anal Calcd for $\mathrm{C}_{41} \mathrm{H}_{65} \mathrm{NO}_{14} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{CO}_{3}: \quad \mathrm{C} 60.27, \mathrm{H} 8.04, \mathrm{~N} 1.70$.
Found: $\quad \mathrm{C} 60.03, \mathrm{H} \mathrm{8.15}, \mathrm{~N} 1.68$.
3-Deoxy-3,4-didehydrodesmycosin (31)
To an ice-cold solution of $\mathbf{3 0}(100 \mathrm{mg})$ in methanol $(1.5 \mathrm{ml})$ was added 0.1 m aq NaOMe in methanol $(0.5 \mathrm{ml})$, and the solution was kept for 4 hours at the temperature. Neutralization (1 m aq HCl) followed by usual work-up gave, after chromatography $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%\right.$ aq $\left.\mathrm{NH}_{3}, 15: 1: 0.1\right)$, a solid of $\mathbf{3 1}$, $80 \mathrm{mg}(83 \%),[\alpha]_{\mathrm{D}}^{20}-38^{\circ}\left(c \mathrm{CHCl}_{3}\right) ; \mathrm{MS} \mathrm{m} / z 754(\mathrm{M}+1)^{+},{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.95(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}$, $\left.17-\mathrm{CH}_{3}\right), 1.18\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, 21-\mathrm{CH}_{3}\right), 1.27$ and 1.28 (each $3 \mathrm{H}, \mathrm{d}, J=\sim 6 \mathrm{~Hz}, 6^{\prime}-$ and $\left.6^{\prime \prime}-\mathrm{CH}_{3}\right), 1.69$ $\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 1.80\left(3 \mathrm{H}, \mathrm{s}, 22-\mathrm{CH}_{3}\right), 2.30\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.48$ and 3.61 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3} \times 2\right)$, $4.05\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}=7.3 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 4.35(1 \mathrm{H}, \mathrm{brs}, 5-\mathrm{H}), 4.56\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime \prime}, 2^{\prime \prime}}=7.9 \mathrm{~Hz}, 1^{\prime \prime}-\mathrm{H}\right), 4.97(1 \mathrm{H}, \mathrm{m}$, $15-\mathrm{H}), 5.58(1 \mathrm{H}$, br s, $3-\mathrm{H}), 5.83\left(1 \mathrm{H}, \mathrm{d}, J_{13,14}=10 \mathrm{~Hz}, 13-\mathrm{H}\right), 6.14\left(1 \mathrm{H}, \mathrm{d}, J_{10,11}=16 \mathrm{~Hz}, 10-\mathrm{H}\right), 7.16(1 \mathrm{H}$, d, $11-\mathrm{H})$, and $9.74(1 \mathrm{H}, \mathrm{s}, 20-\mathrm{H})$.

Anal Calcd for $\mathrm{C}_{39} \mathrm{H}_{63} \mathrm{NO}_{13}: \mathrm{C} 62.13, \mathrm{H} 8.42, \mathrm{~N} 1.86$.
Found: \quad C 62.20, H 8.69, N 1.79.

Acknowledgments

We are grateful to Mr. Masaya Orita and the members of Medicinal Research Laboratories III of Yamanouchi Pharmaceutical Co., Ltd. for measurements NMR spectra and bioassay, respectively.

References

1) Kageyama, S.; T. Tsuchiya, S. Umezawa \& T. Takeuchi: Synthesis of 3,4'-dideoxymycaminosyl tylonolide, a novel type of macrolide derivative. J. Antibiotics 45: 144~146, 1992
2) Kageyama, S.; T. Tsuchiya, S. Umezawa \& M. Orita: Synthesis of 3-deoxy-5-O-mycaminosyltylonolide and 3-deoxy-5-O-(4-deoxymycaminosyl)tylonolide. Bull. Chem. Soc. Jpn. 65: 3405~3411, 1992
3) Tanaka, A.: Synthetic study on 16-membered macrolides. Ph. D. Thesis, University of Keio, Japan, 1984
4) Ömura, S.; A. Nakagawa, M. Machida \& H. Imai: Evidence for configurational identity between leucomycin and tylosin. Tetrahedron Lett. 1977: 1045~1048, 1977
5) Umezawa, H.; S. Umezawa, O. Tsuchiya, T. Takeuchi, A. Tanaka \& S. Sakamoto: Tylosin oxime derivatives and a process for their preparation as antibacterials. Jpn. Pat. 62221695 ('87), Sept. 29, 1987 [CA 108: 187201e]
6) Hamill, R. L.; M. E. Haney, Jr., M. Stamper \& P. F. Wiley: Tylosin, a new antibiotic. II. Isolation, properties, and preparation of desmycosin, a microbiologically active degradation products. Antibiot. Chemother. 11: 328~334, 1961
7) Sakamoto, S.; T. Tsuchiya, S. Umezawa \& H. Umezawa: Synthesis of (14R)- and (14S)-14-de(hydroxymethyl)-14-hydroxymycaminosyl tylonolides. Bull. Chem. Soc. Jpn. 60: 1481~1488, 1987

[^0]: ${ }^{\text {a }}$ Mueller-Hinton agar, inoculum size $10^{6} \mathrm{cfu} / \mathrm{I} \mathrm{ml}$, incubation time: 18 hours at $37^{\circ} \mathrm{C}$.
 ${ }^{\text {b }}$ Multi-resistant strain.
 c Clinical origin.

[^1]: Anal Calcd for $\mathrm{C}_{43} \mathrm{H}_{75} \mathrm{NO}_{13} \mathrm{Si}: \quad \mathrm{C} 61.33, \mathrm{H} 8.98$, N 1.66 .

